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ABSTRACT 

We show that i f  X is a Banach space and if  there is a non-zero real-valued 
C®-smooth function on X with bounded support, then either X contains an 
isomorphic copy of c0(N), or there is an integer k greater than or equal to 1 
such that X is of  exact cotype 2k and, in this case, X contains an isomorphic 
copy of lZ~(N). We also show that i fXis  a Banach space such that there is on X 
a non-zero real-valued C 4- smooth function with bounded support and if X is 
of  cotype q for q < 4, then X is isomorphic to a Hilbert space. 

1. Introduction 

Throughout this paper, a bump function on a Banach space X is a non-zero 
real-valued function on X with bounded support. We shall say that X is 
C k- smooth if there exists a C k- smooth bump function on X, and the set of  such 

functions will be denoted Ck(X). A norm on Xis said (shortly) to be C k- smooth 

if it is Ck-smooth away from the orion. I f  there exists on X an equivalent 
Ck-smooth norm, then Ck(X) is not empty, the converse being open. 

We are concerned with the geometrical implications of the existence o fa  C k- 
smooth bump function on Xwhere k is an integer greater than or equal to 2 or 
k =  +oo.  

Let us first recall some definitions and results. 

Co (or c0(N)) denotes the Banach space of all sequences (x.) of  real numbers 

satisfying lim._® x. = 0. We shall need the following result due to Bessaga and 
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Pelczynski [ 1 ]: A Banach space does not contain a subspace isomorphic to Co if 
and only if for every sequence (xi) in X such that (7_,p_, eix~) is bounded for 
every choice of signs, then (Zr-. eixi) is convergent for every choice of  signs, 
and the set K ffil, J~_l K~ is relatively compact in X, where K~ = 

{Z~_, e~x~:e~ = 1 or - 1 f o r / =  1, . . . .  n}. 
Let us denote 6¢n -- { - 1, + 1 }n, Xis said to be ofcotype q E [2, + oo] if and 

only if there is a constant C such that, for all finite subsets ( x , , . . . ,  x~) of X, 

II x, II ~ <__ c(1/2 n) ~ i fq  is finite, 
i--1 eESP~ i = l  

sup II x, II --< C(1/2~) ~ ~, e~x~ i fq  = + oo. 
l < i < n  ~E6e~ iffil 

Analogously, we say that X is of type p if there is a constant C such that, for all 

finite subsets (xl . . . .  , Xn) of X, 

(1/2 n) Y, e,x, <-_ C II x, II' 
e~SPn i - -  I i 1 

In the definitions above, one can replace, using Kahane inequalities, 

(1/2 n) x ,~ , ,  II ~?-1 e,x, II by ((1/2 ~) Z,e~, II ~?-, e,x, 112) 1'2. Every Banach 
space X is of type 1 and of cotype ~ .  If  X is of type p then X is of type p '  < p,  
and if X is of  cotype q then X is of cotype q' > q. We shall need the following 
characterization of Hilbert spaces due to Kwapien [12]: a Banach space X is 
isomorphic to a Hilbert space if and only if it is of type 2 and of cotype 2. We 
say that X is of exact type p if X is of type p and X is not of type p '  for p '  > p,  
and Xis of  exact cotype q i fXis  ofcotype q and Xis not of cotype q' for q' < q. 
Let us mention that lP(N) is of  exact type inf(p,  2) and of exact cotype 
sup(p,  2) for 1 < p < + ~ and that c0(N) has only type 1 and cotype + ~ and 
no more. We refer the reader to [8] and [17] for further details on these 

notions. 
We now recall some basic facts about the existence of  smooth bump 

functions on Banach spaces. First it is elementary to check that, for every 
measured space (•,A,/z) and every even integer p > 2, the norm in 
LP(t2,A, lz)  is C®-smooth. Kuiper (see [19]) showed that there is on Co an 
equivalent C ~- smooth norm. In fact there is on co an equivalent norm analytic 
away from the origin [8]. On the other hand, Kurzweil [11] showed that: 

(1) 4[0,  1], the space of  continuous real functions on [0, 1], is not 
C'-smooth. 
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(2) /P(N) is not C~-smooth whenever p is not an even integer. 
Leach and Whitfield [13] generalized (1) by showing that if the norm of X is 

rough, equivalently, if the dual unit ball B(X*) does not admit slices deter- 
mined by elements of X of arbitrarily small diameter, then Xis not C 1- smooth. 
Actually, if X is C~-smooth, then X is an Asplund space (see [3]) the converse 
being true if X is separable and open in general. Thus, at least for separable 
spaces, C~-smooth spaces are characterized. Further investigations on 
Cl-smooth spaces can be found in [21] and a thorough exposition will appear 
in a forthcoming book of G. Godefroy and V. E. Zizler [9]. 

On the other hand, the geometry of Banach spaces on which there exists a 
bump function with higher properties of smoothness is far from being eluci- 
dated, although some significant progress has already been made in this 
direction. We have seen that Co is C ~°- smooth. Suppose now that Xis a Banach 
space containing no isomorphic copy of Co. If one can find on X a C~-smooth 
bump function f such that f '  is locally uniformly continuous, then X is 
superreflexive [6], [7]. If one can find on X a C ~- smooth bump function fwi th  
locally Lipschitzian derivative (this is the case if X is C 2- smooth), then X is 
superreflexive and of type 2 [7]. The relationships between the existence of a 
C2-smooth bump function on X and the geometry of X has been further 
investigated in [5], [15], [16] and [18]. 

Let us outline the content of this paper. One of the tools that we shall use is 
the Taylor formula: for f ~  C k + l(X), x E X and h E X, we have 

f (x  + h ) -  f (x)  
= f '(x)(h) + ½f"(x)(h, h) + . . .  + (1/k!)ftk)(x)(h,. . . ,  h) + RK(X, h) 

= Pk(x)(h) "b Rk(X, h) 

with IRk(X, h)[ _-< C(x). [[ h [[k+~. 
In order to estimate Pk(x)(h), we are led to study the k-linear functionals. 

This is done in Section 2. 
We then prove in Section 3 the following abstract version of the result (2) of 

Kurzweil: if X is a C ~- smooth Banach space and if X ;b Co, then X is of exact 
cotype p for some even integer p ->_ 2. We shall also obtain in this section that a 
C4- smooth Banach space ofcotype q < 4 is necessarily isomorphic to a Hilbert 
space. 

In Section 4, wc show that if there exists on X a CP-smooth bump function f 

(p integer, p _-> 2) and if every subspace of X contains a subspacc of cotypc p, 

then X is of cotype p. As a consequence we get a result of B. M. Markharov 



4 R. DEVILLE Isr. J. Math. 

[ 14]: if there exists on X a C 2-smooth bump function f a n d  if every (infinite 
dimensional) subspace of  Xcontains  an infinite dimensional subspace isomor- 
phic to a Hilbert space, then X is isomorphic to a HUbert space. Actually, our 
argument is a generalisation and a simplification of  Makharov's proof. 

We then apply in Section 5 the result of Section 4 to show that i fXis  of exact 
cotype p (p  integer, p > 2) and if X is C P- smooth, then there is an infinite 
dimensional subspace Y o f X a n d  a p-linear (symetric) continuous form • on Y 

such that, for every y ~ Y, ~ ( y ,  y , . . . ,  y) > I1 Y liP. Finally, using a diagona- 
lizing argument, we exhibit a subspace Z of  Ywhich is isomorphic to lP(N). As 
a consequence of our previous results, we get that if X is a C °- smooth Banach 
space, then either X contains an isomorphic copy of  c0(N) or there is an even 
integer p > 2 such that X contains an isomorphic copy of  IP(N), thus answer- 
ing a question of V. E. Zizler. 

Some of  the techniques used here have been introduced by Kurzweil in [ 11 ] 
and developed in [2], [5], [7], [15], [16], and [18]. 

2. k-Linear forms on a Banach space 

Throughout  this section, X denotes an infinite dimensional Banach space. 
Let k he an integer greater than 1, and Q be a k-linear continuous form on X. 
We recall that  

II Q II - s u p {  I Q ( x , ,  x2 . . . . .  xk)  l: II x ,  II ---< 1 . . . . .  U x~ U -<- 1} < + 

and we shall write shortly Q(x) in place of Q(x, . . . .  x) for x EX,  when no 
confusion is possible. Let k~ , . . . ,  km be integers greater than 1 and let Qj be a 
kclinear continuous functional on X, for 1 < i < m.  Our aim in this section is 
to find conditions on X such that for any e > 0, there exists an x ~ X, x ÷ 0, 
such that, for 1 < i < m,  

IQ,(x)I -<__e IIx I! k'. 

We first observe that the situation is simple whenever all the k~ are odd: 

LrMMA 2.1. Let R~ be a k~-linear continuous form on X with k~ odd 
integers for 1 < i <= m. Then, for every (m + 1)-dimensional subspace H of  X, 

for every J > O, there exists x ~ H ,  II x II = g, satisfying,for all i E { 1 . . . .  , m }, 
Ri(x) ffi O. 

PROOF. Let H be an (m + 1)-dimensional subspace of  X and t~ > 0 be 
fixed. Denote by R the application from the sphere of  Hcente red  at 0 of radius 
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6 into R m given by R (x) = (R~(x), R 2 ( X ) , . . .  , R m (x ) ) .  R is continuous and odd. 
According to the Borzuk-Ulam antipodal theorem (see e.g..[4] Cor. 4.2), there 
is an x ~ H ,  II x II -- 6, such that R ( x )  = O. 

We now study the case with k~ even numbers. In the following two lemmas, 
we use the approach of [18] Lemma 1.4: 

LEMMA 2.2. Let  k be an integer, k > 2, Q be a k-linear continuous form on 

X ,  and x~, x2 . . . .  , x ,  be elements o f  X .  Then there is a constant C depending on 

k such that 

_-< c U Q II e,x,  
i f f i l  i f f i l  2 

where (e~)i ~ ~,...,, are independent Bernoulli variables and  

where the summat ion  over e is taken over all choice o f  signs e = (ei)r-~. 

PROOF. Let (el)~<,.~,,~z/_~-~ be independent Bernoulli variables on a 
probability space (f~,A,/~) (therefore ~({x~fl:ei(x)-- 1}) = ½ and 
u({xen:ei(x) = - 1))  = ½). 

We have 

Q(xi,  xi, . . . , xi) 
iffil 

i - l  y - i  j - I  

j 1 j - - I  j--1 j - - I  

therefore 
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---< II Q II f ,  ~ n e?xj 
] j l j = l  

using Jensen's inequality and the independence of  the ei 's  we obtain 

--< It Q II 

so, using Kahane's inequalities, there is a constant C depending on p such that 

__< c II Q II 
i - I  j - i  

LEMMA 2.3. Let Q~ be a ki-linear continuous form on X with kj > 2 for 

1 < i <= m,  and let e > O. We assume that for every x ~ X ,  II x II = 1, 

e _-< sup{ I Qj(x)l: 1 =<j ___< m}. 

Then X is ofcotype k, where k = sup{k~ : 1 _-< i =< m }. 

PRoof.  Let x,,x~, . . . .  x~ be elements of X. Since II ~P-1 e,x~ 115_ > - II x, II 
for every i ~ { 1 , . . . ,  n}, replacing x~ by 2x~ we may assume that, for every 
i E { 1 . . . .  , n }, II x~ II ~ 1 and II ~ -  ~ e,x~ I1~ ~ 1. We then have 

e • II x~ II --< I Qj(x,)l 
i--I i--I j 1 

_<mmax ~: IQj(x~) I 
i--I  

< m  i IQj0(xi)l 
i--I 

for some A E { 1 . . . .  , m }. Without loss of generality, we may assume A = 1. 

Let 

l + = { i E { 1 , . . . , n } : Q ~ ( x ~ ) > O }  and l - = { i ~ { 1 ,  . . . .  n}:Q~(x~)'<O}. 

We can assume further that 
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]~ Q,(xi) > - Y. Ql(xi). 
i E l  + i ~ l -  

Under  this condition, we obtain 

e ( ~  [[1, , . k )<2m Y~ QI(x~) 
i - 1 i E l  + 

--<2mllO, ll i~+e'x' ~' 

< 2m II QI II eix, 
i - I  

< 2m II Q, II ~ e,x, 2" 
i - 1  

Therefore X is of  cotype k. 

PROPOSITION 2.4. Let Q~ be a ki-linear continuous form on X with 1 <- k~ < 
k for 1 <-_ i < m, and assume X is not ofcotype k. 

Then, for every e > 0 there is an infinite dimensional subspace Y of  X such 
that 

V x E Y  V i E { 1 , . . . , n }  IQ,(x)l~ellxllk,. 
PROOF. If  some of the Qj's are I-linear, say Q], Q2 . . . . .  Qp, replacing X 

by f'ff-i Ker Qj, which is a finite codimensional subspace of  X a n d  therefore is 
not of  cotype k, it is enough to consider only the Qj's which are kj-linear with 
kj > 2. Therefore we may assume that kj >= 2 for 1 _-<_ i =<_ m. 

It is enough to construct an increasing sequence of subspaces Y. of  X such 
that d im Y. = n, and a sequence of  real numbers (e.), 0 < e. < e, satisfying 

H.: for every x ~ Y . ,  IIx II -- 1, and for every i E { 1  . . . . .  m}, IQ~(x)l =< 
~ - -  e n .  

According to Lemma 2.3, HI is satisfied with et -- e/2. Let us assume that H. 
is satisfied and let us construct Y. +1 such that: 

For every x E Y. + 1, II x II = l, and for every i E { 1 . . . . .  m }, I Qi(x) l < e - 
eJ2,  and this will prove the lemma. 

Let t~. > 0 be specified later, A. be a t~.-net of  the unit  ball of  Y. and Zn be a 
finite codimensional subspace of X satisfying, for every x E Y. and for every 
z E Z . ,  

(1) IIx II _--<2 IIx +z  II. 



8 R. DEVILLE Isr. J. Math. 

Now, applying Lemma 2.3 to the space Z,  which is not of cotype k, we can 
choose z, ~ Z , ,  [[ z, [[ = 1, such that for every i ~ {1 . . . . .  m}, for every 
j ~ { l , . . . ,  k~} and for every y E A , ,  

(2) I Qi(y)(z,,)l < ~,,, 

where we have written Q~(y + z) = Q~(y) + Q: (y)(z) + . . .  + Qp,(y)(z) with 
Qi(y)  j-linear continuous form on X (note that Qp,(y)(z) = Qi(z)). 

Let us consider Y,+~ the subspace spanned by Y. and z,. Y,+I is a 
(n + 1)-dimensional subspace of X and we claim that H, +1 is satisfied if ~, is 

small enough. Indeed, let t E Y, +1 such that [I t ]1 < 1. We have t = x + 2z, 
with x E Y.. It follows from (1) that II x II --< 2 and 121 < 3. Let us choose 

y EAn such that II x - y II --< 2~,. We have then, for every i E { 1 . . . . .  m }, 

(3) I Q~(x + 2z,) - Q,(y + 2z,)[ < II Q, II ~(0.) with lima(O.) -- 0 
6.~0 

and, on the other hand, 

IQi(y +2zDI  _-< IQi(y)l + IQ](y)(2z,)l + . . .  + IQk,(y)(2z,)l 
(4) 

< ( e - e , ) +  3t~, + . . .  + 3k4,. 

It follows from (3) and (4) that, for every i ~ { 1 . . . . .  m }, I Qi(x + ,~z,) I _-< e - 
e,/2 whenever $, is chosen small enough (the choice of 5, depends only on e, 

and on the 11 (2, 11 's). 

We shall also need the following slightly stronger version of Proposition 2.4: 

PROPOSITION 2.5. Let Q~ be a k-linear continuous form on X for 1 < i < mo, 
and let Q~ be a k~-linear continuous form on X with 1 < ki < k -  1 for 

m o + l < i < m .  
Assume that: 

(1) X is not o f  cotype k - 1, 

(2) for every i ~ { 1 , . . . ,  m0}, for every e > 0 and for every infinite dimen- 
sional subspace Y o f  X,  there is an x ~ Y, x ~ O, such that I Q~(x) I < e [[ x [1 k. 

Then, for every e > O, there is an infinite dimensional subspace Y o f  X such 

that, for every i E { 1 . . . .  , m } and every x E Y, 

I Q , ( x )  I < e II x II k,. 

PRoof.  We fix e > 0 and we proceed by induction on the number  mo of 
k-linear continuous forms Qi on x .  By Proposition 2.4, Proposition 2.5 is 
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satisfied if  m0 = 0. Assume now that Proposition 2.5 is true for m o -  1; 
therefore, under  the hypothesis of Proposition 2.5, we can find an infinite 
dimensional subspace Y of  X such that, for every i ~ { 1 . . . .  , m }, i # m0, and 
every x E Y, I Qj(x)I _-< e II x II k,. We can then construct an infinite dimen- 
sional subspace Z of  Y (using (2) for i = mo) in the same way as in the proof  of  

Proposition 2.4 such that, for every x ~ Z ,  I amo(X)l ___<e II x II and this 
proves Proposition 2.5. 

We now give a consequence of Lemma 2.1 and of Proposit ion 2.4. For this 
purpose, we need to introduce the following definition: 

DEFINITION. An application P from X into R is called a polynomial if we 

can write, for every x E X, 

P(x)  = e l (x)  + P2(x, x )  + . . .  + ek(X, X . . . .  , X), 

where Pj is a j-linear continuous form on Xfor  1 < j  < k. k is called the degree 
of  P. 

PROPOSITION 2.6. Let P~ . . . .  ,Pm be polynomials o f  degree less than or 

equal to k on a Banach space X,  and assume that X is not o f  cotype k i f k  is even 

and that X is not o f  cotype k - 1 i f k  is odd. Let  e > 0 and 0 < a < 1. Then there 

exists x E X,  II x II -- a, such that for every i ~ { 1 , . . . ,  m }. 

IP~(x)l < e  and I e ~ ( - x ) l  < e .  

PROOF. We split the Pj's into multilinear continuous forms that we call Qj, 
1 ___<j --<Jo, and Rj, 1 ___< i -----<Jl, with the degree of the Qj's even and the degree of  
the Rj's odd. Quantities e, a and the P;'s being fixed we can find, by 
Proposition 2.4, an infinite dimensional subspace H of X satisfying, for every 

x e l l ,  II x II = a ,  and every j ~ { 1 . . . . .  j ,  }, 

(5) I a j (x)  I < e/k. 

Since dim H >J0 + 1, using Lemma 2.1, there exists x ~ H ,  II x II = a, such 
that for a l l jE{ 1  . . . .  ,j~}, 

(6) Rj(x) = O. 

We deduce from (5) and (6) the existence o f x  ~ X  satisfying 

V i E { 1 , . . . , m }  Iei(x)l < e  and I P i ( - x ) l  < e  

which proves the proposition. 
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3. Cotype of C~-smooth Banach spaces 

In this section, we prove the following result: 

THEOREM 3.1. Assume that X is a C~-smooth Banach space which does not 

contain an isomorphic copy o f  co. Then there exists an integer k > 1 such that X 

is o f  exact cotype 2k. 

For the proof  of Theorem 3.1, we need one more elementary lemma: 

LEMMA 3.2. Let K be a compact o f  X,  f E  C k + I(X), k > 1 and e > O. Then 

there exists C > 0 and ~ > 0 such that, for every x E K and for every h ~ X,  

II h II < a ,  
Uf(x +h)-f(x)-Pk(x)(h)tl ---< C II h IIk+'. 

PROOF. Since f ~ C k + t ( X ) ,  in particular f E C k ( X )  and f~k~ is locally 
Lipschitz on X. Therefore, there exists ~ > 0 and M > 0 such that, for every 

x ~ K a n d e v e r y h ~ X ,  IIh II < ~ ,  

II ~k>( x + h) - ~k~(x) II --< M II h U. 

Now, using Taylor's formula, i f x  E K  and h ~ X ,  U h II < ~, 

I f (x  + h) - f ( x )  - Pk(x)(h)l 

= I fo' [f~k~(x + th)(h) - ftk)(x)(h)] (1 t )k- l / (k  1)!dt 1 

=< (I/k[)II h II k sup II f<k)( x + th) - f (k)(x)II  
t~[0,t] 

<-_(M/k!) II h II k+~. 

REMARK. Let a satisfy a =< J and a k+'-q <= e/C, for some q such that 

k < q < k + 1. We have then, for x E K and h E X, II h II ~ a, 

IRk(x, h)l = I f (x  + h) - f ( x )  - Pk(x)(h)l <-_ e II h I1'. 

PROOF OF THEOREM 3.1. Let X be a Banach space not containing a sub- 

space isomorphic to Co, and let f be a C ~°- smooth bump function on X such 
that  f(0) -- 1 and f (x )  = 0 if II x II >-- 1. According to Fabian et al. [7], X has 
type 2 and so [15] Xhas  also a finite cotype. Therefore 

C(X) = inf{q ~R:  Xhas  cotype q} < + oo. 

Denote k = [C(X)] the greatest integer less than or equal to C(X) and p -- 2p '  
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the greatest even integer less than or equal to C(X). Assume that X is not of  

cotype p, and choose q ~ R satisfying 

c(x)  < q < [ c ( x ) l  + 1. 

Since X is of  cotype q, there exists a constant C such that 

V n ~ N  VXI, X2,...,Xn~X IIx, U¢<C e,x, 
i - - l  i l 

Fix e such that 0 < e < (C + 1) - ~ By induction, we construct vectors x. ~ X  

satisfying 

(1) 

(2) 

x0-- 0, 

Kn- l=f  Y" ¢ix"e'= + . . . . .  n}, 

(3) H. = {hEX: VxEK._I :Pk(x)(h)<= 3-"andPk(X)(-h) < 3-"}. 

Using Proposition 2.6, for every a E(0, 1), H. n (h E X :  N h II = a} is not 

empty. 

E.  = {h E H, : II h II =< 1 and, for every x ~ K. _ ~ :1Rk(X , h) I ~ g II h II q and 
(4) 

IRk(X, -- h)l < e II h IIq}. 

According to I_emma 3.2 and the remark following it, E,  O {h E X: II h II ffi a } 
is not empty whenever a is small enough. 

(5) x. ~ E . ,  II x.  II >-- ½ sup{ II h I1: h EE.} .  

Once this induction is completed, we set K -- U,eN K,. 

First case. K is not bounded 
There exists an integer n such that: 

sup{ II x II : x E K . - , }  _-< t and sup{ II x II : x ~ K . }  > 1. 

Without loss of  generality, we can assume that [I Zp_ t xt II > 1, and we obtain 

1 =  f(i~oXi)--f(O) 

__<_ 
i - 1  j j I 
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< ~ (e II x, II ¢ + 3 - ' )  
i=l 

--<. IIx, I1' + 1 + ½ < e ( C +  1 ) + ½ ,  
i 1 

therefore this case is not possible. 

Second case. K is bounded 

Since Xdoes  not contain a subspace isomorphic to Co, Kis  relatively compact 
and l im,_  ~ II x .  II = 0 [ 1 ]. Using Lemma 3.2 and the remark following it, there 
exists 6 E (0, 1) such that, for every x E K and every h E X, II h II =< 6, 

IRk(x,h)l <e [[h II a 

Therefore, since K,_~ C K, i f h  EH,  and II h II --< 6, then h E E , .  
Since for every a E ( 0 ,  1), H, O { h E X :  II h II = a }  is not empty, by (5), 

II x .  II > 6/2 for every n E N, which contradicts the fact that l im,_~ II x .  II = 
0 and that 6 is independent  of  n. 

A closer look at the proof  of Theorem 3.1 shows us that we have actually 
proved more. Let us first introduce the following definition which appears in 
[18]: 

DEFINITION. Let q > 1 and denote k the greatest integer strictly less than q. 
Let f be a real-valued function on X. We say that f is Ha-smooth if f is 
Ck-smooth and if for every x E X t h e r e  exists 6, M > () such that II y - x II < 

6 and II z - x II < 6 implies Ifk(y)  - fk(z) l <--_ M II y - z II a-k. Note that i f J  
is Ck + ~_ smooth, then f i s  H a- smooth. 

Modifying in an obvious way Lemma 3.2, one can show, using the same 
proof  as the proof  of  Theorem 3.1: 

THEOREM 3.1 bis. Suppose that X is a Banach space of  cotype q < + ~ and 
that X is not of  cotype k, where k is the greatest even integer less than or equal to 
q. Then there does not exist on X an Hq'-smooth bump function for q' > q. 

In particular, using the fact due to Kwapien [ 12] that a Banach space of  type 
2 and cotype 2 is isomorphic to a Hilbert space, we get the following 
improvement  of a result of  [5] (Theorem l(b)): 

COROLLARY 3.3. Assume that X is a Banach space of  cotype q with q < 4 
and that there is on X a C4-smooth (or merely He-smooth for q' > q) bump 

function. Then X is isomorphic to a Hilbert space. 
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Of course, applying Theorem 3.1 to L p spaces, we have 

COROLLARY 3.4 (Kurzweil-Bonic-Frampton). Let ( ~ , A , # )  be a mea- 
sured space such that LP(~, A, lz) (denoted shortly L p) is infinite dimensional. 
Suppose that p >-_ 1 and that p is not an even integer. Then there does not exist 
on L p a C~-smooth (or merely H¢-smooth for p ' > p) bump function. 

PROOF. Indeed, ifp < 2, L p is of  type p but not of  type 2, and, ifp > 2, L p is 

of  cotype p but not of  cotype q for q < p (see for instance [20]). 

We conclude by giving an application on k-linear continuous forms on X, 

or, more generally, on polynomials on X: 

COROLLARY 3.5. Assume that X is a Banach space offinite cotype but is not 
of  exact cotype p with p an even integer. Then, for every polynomial Q on x 
(whatever is its degree) and for every e > O, there exists x E X ,  II x II -- 1, such 
that IQ(x)I < e .  

PROOF. Indeed, otherwise there would exist a polynomial Q on Xand  e > 0 

such that for every x EX,  II x II -- 1, we have Q(x) > e. L e t f b e  a C~-smooth 

real function on R such that f ( 0 ) =  1 and f ( t ) =  0 if I tl > e. The function 

¢ : X - -  R defined by 

~(x) = fo  Q(x) if II x II 1 

¢(x) = o if II x II > 1 

is a C ~- smooth bump function on X, which contradicts the hypothesis. 

4. Cotype and snbspaces of CP-smooth Banach spaces 

THEOREM 4.1. Let X be a Banach space and p be an integer. Suppose that 
there is on X a CP-smooth bump function ~ and that every subspace Y of  X (Y 
infinite dimensional) contains an infinite dimensional subspace of  cotype p. 
Then X is of  cotype p. 

PROOF. Let us assume that the hypotheses of Theorem 4.1 hold and that X 
is not of  cotype p. We shall find a contradiction in the same way as in [ 15]. Let 

be a CP-smooth bump function on X satisfying ~(0) -- 1 and ¢(x) = 0 if 

II x II > 1. 
By induction, we construct a sequence (xn) of elements of X, finite dimen- 

sional subspaces Xn of X, finite subsets An of X and finite subsets B. of X* 
satisfying: 
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(1) x, E X ,  II x, II = 1, 
and, for n >= 2, 

(2) An ffi {(Z?_q' a~x~)/2n: 1 < a,, a ~ , . . . ,  an-m < 2n}, 

(3) Xn ---- span{x,: i < n }, 

(4) Bn is a finite subset of  X* such that the restrictions of the elements of Bn 
to Xn form a 2-n-net of  B(X*), 

(5) II Xn II -- 1 and Y(Xn) ffi 0 for eve ryyEBn,  

(6) for every x EAn, for every q < p and for every finite sequence 1 < nl < 

n2 <= . . .  <-_ n~ = n, ~q)(x)(Xn,, Xn2 . . . . .  Xn,) < e(n, p)  where e(n, p) 
satisfies, for every n E N, 

p .p!  Y, e(sp, p)  < 1/3 n. 
n <s l  <s2 < . .  • -<sp< + oo 

This construction is a straightforward application of Proposition 2.4 at each 

step. 

Once this construction is completed, set F = Un~N Xn and A = Un~N An. (F 

is the norm dosed subspace spanned by the Xn'S and the norm closure of A 

contains the ball of  Y centered at 0 of radius ½ since, according to conditions 

(3), (4) and (5), (Xn) is a basis of  F with basis constant 2.) Since F is an infinite 

dimensional subspace of  X, by hypothesis, we can find an infinite dimensional 
subspace Z of  F of  cotype p: there is a constant C > 0 such that, for every 

n E N  and every finite sequence (Yl, Y2, • • •, Yn) of  elements of  Z,  

(*) Y, II y, I1' <= c e,y,  . 
i - 1  i - - I  

In fact, replacing Z by a subspace of  Z and using a standard perturba- 

tion argument, we can assume that Z--s-P-~{UK: k E N } ,  where (Uk) is a 

block basis of  (Xn) such that UkEA for evei T k E N .  Finally, let us fix 

0 < e < ( C +  1)-~/2. 

We now construct by induction a sequence (Yn) of elements of A in the 

following way: we choose Y0 = 0. If  we have constructed Y0, Y~, • • •, Yn-~, then 
w e  s e t  

(7) kn = inf{k >= n : Yo EAk  for every p < n}, 

(8) Zn = span{uk : k _>-- kn}, 

(9) En = { y E a  n Zn:ll Y II ~ ½ and for every choice of sigus (e;)r-~ 

IRp(Y~Z.~ 1 e, xi, enY)l ----< e II Y II'}, 
(10) ~.--sup{ Ily II :YEEn} >0, 
(11) choose Yn EEn such that II Yn II --> ~n/2. 
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Once the y, 's  are constructed, let Y, = (Z~=I eiy~:eiE{ - 1, + 1} n } and Y = 
[-J,Er~ Y~ C Z.  We claim that 

(**) eiy~ (y,)  <_N 1/3 ~ 
i = l  

and 

(***) tiYi ( -  N 1/M. 
i - I  

Indeed, set x = 2;r211 e~y~ and y, = 2~k.  akUk = ZT-% bsxs. Note that k. ~ n 
and, since (x,) is a basic sequence with basis constant _-< 2, we have, 

for s = l . . . . .  m,  I bs _--< 2 [] yn II --< 1. Therefore, for q ~ { 1, 2 , . . . ,  p}, we 
have 

<= i Y. bs,b~2...b,,~q~(x)(x,,,x,2,... ,x,,) I I ~q)(x)(y.)I 
kn < s l , s l , . . . , s q  < m n 

-_< ~ I ~,~(x)(x,,, x,~ . . . .  , x,,)l 
k .  <~ sbs2 , . . . ,Sq  <-- m .  

--< q! E I ~,~(x)(xs,, x,~, . . . ,  x~,)l 
k,  <= s ~,v2,...#q <~ m ,  

~= t,r 2 e(s~, t,) 
n <=sl<-_s2 < _ . .  • ~<sq< + oo 

< 1/(p • 3") 

and this proves (**) and (***). 
It follows from (**), (***) and (9) that 

I( ) f e , y ~ + y . - f  e,y, _-<ellY, U ~ + l / 3 "  
\ i l l  i = 1  

and 

e , y , - y .  - f  e,y _-<e Ily. II' + 1/3,; 
\ i - - I  i 1 

two cases are possible. 

First case. Y is not bounded 

Repeating word by word the argument of the case "K is not bounded" in the 
proof  of  Theorem 2.1, we see that the hypothesis "Y is not bounded" 
contradicts the choice of  e (here the inequality (,) is used). 

Second case. Y is bounded 
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Since X is hereditarily cotype p, X does not contain a subspace isomorphic 
to co, therefore, by a result of Bessaga and Pelczynski [1], Y is relatively 
compact and lim,_ + oo II y,  II -- 0. Therefore, if we set 

E = [ y E A :  IlY II ---< 1 and for every zEY,  

IR(z,y)l _-<e IlY I1' and I R ( z , - y ) l  _-<e IlY liP}, 

by Lemma 3.2, E contains all the points of A of norm < J for some J > 0, and 
this implies by (2), (9), (10) and (11) that lim inf,_+~ II y. II --> d/2, which is a 
contradiction. Therefore, X is of cotype p and the theorem is proved. 

We recall that if (X,) is a sequence of (finite or infinite dimensional) Banach 
spaces, then 

( ~ ) X , ) p =  (x , ) ' x ,  e X ,  and Y, IIX, I IP<+oo  
n - - I  

is a Banach space equipped with the norm II (x . )  II = (Z+-~ II x .  liP) ''p. Let us 
denote C, > 0 the cotype p constant of X,. The following result is an 
immediate consequence of Theorem 4.1: 

COROLLARY 4.2. Assume that there exists on ( ~ X.)p a CP-smooth bump 
function, where p is an even integer > 2. Then lim sup,-+oo C, < + oo. 

In particular, i f  an infinite number of the X,'s are not of  cotype p, then 
( ~ )  X,)p is not CP-smooth. 

For instance, it follows from Theorem 3.1 and Corollary 4.2 that if 
1 < p < q < + ~ ,  then ( ~ )  lq(N))p is never C~-smooth. 

The following corollary is the main result of [15]: 

COROLLARY 4.3. Assume that X is a C2-smooth Banach space such that 

every infinite dimensional subspace of  X contains an infinite dimensional 
subspace of cotype 2, then X is isomorphic to a Hilbert space. 

In particular, if  X is a C2-smooth Banach space such that every infinite 
dimensional subspace of X contains an infinite dimensional Hilbert space, then 
X is isomorphic to a Hilbert space. 

PROOF. The assumptions of Corollary 4.3 imply, by Theorem 4.1, that Xis 
of cotype 2. On the other hand, according to Fabian et al. [7], a C2-smooth 
Banach space which does not contain an isomorphic copy of Co is of type 2. 
Therefore, X being of type 2 and of cotype 2 is isomorphic to a Hilbert space 
by. a result of Kwapien [ 12]. 
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COROLLARY 4.4. Let q < 4 and assume that X is a hereditarily cotype q 
Banach space (i.e. every infinite dimensional subspace Y o f  X contains an 
infinite dimensional subspace H o f  cotype q) and that X is C4-smooth. Then X is 
isomorphic to a Hilbert space. 

PROOF. Corollary 4.4 follows from Corollary 3.3 and Corollary 4.3. 

5. Subspaces of CP-smooth Banach spaces 

In what follows, let p be an even integer, p > 2, and assume that X is a 

C p- smooth Banach space of exact cotype p. Our goal is to show that Xcontains 

an isomorphic copy of  lP(N). Our first step is the following: 

PROPOSITION 5.1. Let p be an even integer, p > 2, and X be a CP-smooth 

Banach space o f  exact cotype p. Then there is an infinite dimensional subspace 
Z o f  X and a p-linear continuous symmetric form ep on X such that, for every 
x ~ Z ,  ¢p(x, x , . . . ,  x)  > H x ]]P. Moreover, none o f  the infinite dimensional 

subspaces o f  Z is o f  cotype p - 1. 

PROOF. We shall use the same argument as in the proof of  Theorem 3.1. 

Replacing X by a suitable infinite dimensional subspace of  X, we can assume, 
by Theorem 4.1, that none of the infinite dimensional subspaces of X is 

of  cotype p - 1. In order to get a contradiction, assume that, for every p- 

linear continuous symmetric form ~ on X, for every e > 0 and for every 
infinite dimensional subspace Z of X, there exists x ~ Z ,  x ~ O, such that 

 x,x . . . . .  x ) < e  II x II p- 
By induction, we construct a sequence (xn) of elements of  X and infinite 

dimensional subspaces Z~ of  X in the following way: 

Choose x0 = 0 and Z0 = X. If x0, x2 . . . . .  xn- 1, Z0, Z~ . . . . .  Zn _ t have been 
constructed, choose, by Proposition 2.5, an infinite dimensional subspace 

Z~ c Z~ _ t such that for every choice of  signs (e,)r_-i ~, for every q _-< p and every 

x ~ Z ~ ,  

e.ixi ( x , x , . . .  _-< l / (p .3n) .  
\ i = 1  

Therefore, we get 

eixi (x) < 1/3 n. 
i 1 

Let 



18 R. DEVILLE Isr. J. Math. 

and 

E~ ffi { x~Zn:  [[ x [[ ~ 1 and for every choice of signs (ei)~-l, 

, , - ,  e , x , ,  Ux 

an ---- sup{ II x II: x  En}. 

Choose x~ EE~ such that l[ x~ I[ >-- aft2. Once the xn's are constructed, set 

K ~ = {  ~ 1 , + 1 }  ~} and K =  ~NU K~. 

The contradiction is then obtained in the same way as in the proof  of  Theorem 
3 . 1 ,  distinguishing the cases K bounded and K unbounded.  

THEOREM 5.2. Let X be a CV-smooth Banach space of  exact cotype p (p 
even integer > 2). Then X contains an isomorphic copy of  lP(N). 

REMARK. According to Proposition 5.2 and Lemma 2.1, if p is an 
odd integer (p  > 2) and if X is of  exact cotype p,  then X cannot be C p- 
smooth. Therefore, the hypothesis of  Theorem 5.2 never holds for p an odd 
integer, p > 2. 

COROLLARY 5.3. Let X be a C~-smooth Banach space. Then, at least one 
of  the following statements is satisfied: 

(1) X contains an isomorphic copy of  co(N). 
(2) There is an even integer p > 2 such that X contains an isomorphic copy 

of  IP(N). 

PROOF OF COROLLARY 5.3. Let X be a C~-smooth Banach space. I fXdoes  
not contain an isomorphic copy of  c0(N), then, by Theorem 3.1, there exists p 
an even integer, p > 2, such that X is of exact cotype p. The corollary follows 
then from Theorem 5.2. 

PROOF OF THEOREM 5.2. Under  the hypothesis of  Theorem 5.2, we can 
apply Proposition 5.1. There is an infinite dimensional subspace Z of  X and a 
p-linear continuous symmetric form ~ on X such that, for every x ~ Z ,  
O(x, x , . . . ,  x)>_- [[ x liP. Moreover, none of  the infinite dimensional sub- 
spaces of Z is of cotype p - 1. 

Let (xn) be a basic sequence of norm 1 elements of Z.  We notice that 
Proposition 2.4 has the following consequence: suppose that for 1 < i _-< m ,  ¥ i  
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is a k~-linear continuous symmetric form with k; < p - 1. Then there is a 

block basic sequence (Yk) of  (x,) satisfying II yk II = 1 and 

~ ( Y k ,  Y k , . . . ,  Yk) < ~k for every k E N and every i E { 1, 2 . . . . .  m } 

where (t~k) is a sequence of  real numbers decreasing to 0 and satisfying 

~k, < p/(2" p!). 
1 ~ k ~ k 2 ~ . . .  ~kp< + c¢ 

k l  ÷ kp 

This remark allows us to construct a block basic sequence 

(x,) ,  IlY~ 11 = 1, such  that for every sequence of  integers 

k2<=...<=k,<+~ 

#P(Yk,, Y k , . . . ,  Yk,) -->-- 1 ifk~ = k2 . . . . .  kp, 

¢P(Yk,, Yk~ . . . . .  Yk)  < ~k, otherwise. 

Let  (ek) be the unit vector basis of  lP(N) and define 

(Yk) of 
1 < k t  < 

F: I ~ ( N ) ~ X ,  

+Qo +oo 

akek---, ~ akYk. 
k = l  k = l  

We claim that F is an isomorphism from lP(N) into X. To show this, it is 

enough to find two constants A, B > 0 such that, for every y ~ IP(N) with finite 

support, 

A U y I1~,~ ~ II F(y) IIx ~ B II Y IIt,¢m. 

Let us denote, for x E Z ,  ~(x) = @(x, x , . . . ,  x)  and C = sup{ [~(x) l: x E l ,  

II x II = 1}. Let  y -- z#_ ,  akek. We  have F ( y )  = Zp,_~ akYk and 

~ ( F ( y ) )  

n 

>= ~ at~ - Y. 
k -  I l <-kl  <. . . . <_kp<-n  

kl÷k, 

K(k~, k2, . . . , kp) lak, ak," " " ak, dP(Yk,, Yk2 . . . .  , Yk,)l 

n 

> Y, a~ - p! 
• . ' <  < n  k - I  l.<kt "<. . k p _  

k~÷k~ 

lak, ak2" " "ak, l &  
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Therefore 

n 

>-_ Y~ a~ - pl/p Y~ 
k - 1  l "< kl  < . . .  "< kp<~n 

k~ ÷ kp 

k - I  k - !  l <~kl < .  . . <_kp<n 
kl  ÷ kp 

- - 2  k 1 

n 

[[ Y J{~"tm = ~ a~ =< 2~0(F(y)) __< 2C {[ F(y) [[p. 
k - I  

This yields the left-hand-side inequality. On the other hand, a similar com- 
putation gives 

,[F(y)[,P <=~(F(y))<=(C +½)( ~ a~)=(C+½)[ [y[ [v  
k 1 

and this proves Theorem 5.2. 

REMARKS. (1) It is known that c0(N) and/P(N), forp an even integer, have 
equivalent norms which are C~-smooth away from the origin and therefore 
these spaces admit a Coo-smooth bump function. Corollary 5.3 states that, 
conversely, a Banach space admitting a C ®- smooth bump function contains a 
subspace isomorphic to one of these elementary examples (c0(N) and I~(N) for 
p an even integer). 

(2) It is an easy exercise to show that the Banach space 

X = (l 2(N) ~)/4(N) ~ ) . . .  ~ / 2k(N) ~ - . -  )0 

of sequences (xb x2, . . . ,  Xk . . . .  )~/2(N) X/4(N) X " '"  X 12k(N) X " '"  such 

that limk--+o~ [[ X k  ][la(N) ffi 0 endowed with the norm 

II (x,, x 2 , . . . ,  x k , . .  ) II = sup II xk I1,  
k>.l 

is a C°°-smooth Banach space (the proof is a refinement of the proof that 
c0(N) is C°-smooth appearing in [19]) and X contains all the elementary 
examples of Coo- smooth Banach spaces, i.e. co(N) and l p (N) for every p an even 
integer _>- 2. 

(3) The results of this paper show that there are very few Banach spaces 
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admitting a C ~- smooth bump function. Another result in the same direction 
was obtained recently in [14], where it is shown that the only Orlicz sequence 
spaces admitting a C~-smooth bump function are the spaces IP(N) where p is 
an even integer > 2. 

(4) In view of remark (3), one can ask if the only Banach spaces admitting a 
C ®- smooth bump function are the subspaces of the spaces L p(f~) where p is an 
even integer > 2. This is not the case since one can easily check, just looking at 
the formula of the norm, that the Banach space ( ~  14(N))8 of all sequences of 
scalars (an,k) such that II (an k) II = , v  ~4~2~*1/8 is C®-smooth (the , ~ Z . ' k m l ~ - ~ n m l ~ t ~ n , k ]  J ] 

8th power of  the norm is an analytic function on ( ~  14(N))8). On the other 
hand, X-- ( (~I4(N))  s cannot be isomorphic to a subspace of some LP(~'~) 
because if X is a subspace of LP(~), then X can contain 12(N) or lP(N), but 
cannot contain l q(N) for q ~ 2 and q ~ p, which contradicts the fact that X 
contains both 14(N) and IS(N). 
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